Unitary-stochastic matrix ensembles and spectral statistics

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametric Spectral Statistics in Unitary Random Matrix Ensembles: From Distribution Functions to Intra-Level Correlations

We establish a general framework to explore parametric statistics of individual energy levels in unitary random matrix ensembles. For a generic confinement potential W (H), we (i) find the joint distribution functions of the eigenvalues of H and H = H + V for an arbitrary fixed V both for finite matrix size N and in the “thermodynamic” N → ∞ limit; (ii) derive manypoint parametric correlation f...

متن کامل

Interpolation between Airy and Poisson statistics for unitary chiral non-Hermitian random matrix ensembles

We consider a family of chiral non-Hermitian Gaussian random matrices in the unitarily invariant symmetry class. The eigenvalue distribution in this model is expressed in terms of Laguerre polynomials in the complex plane. These are orthogonal with respect to a non-Gaussian weight including a modified Bessel function of the second kind, and we give an elementary proof for this. In the large n l...

متن کامل

Universality of the Local Eigenvalue Statistics for a Class of Unitary Invariant Random Matrix Ensembles

The paper is devoted to the rigorous proof of the universality conjecture of the random matrix theory, according to which the limiting eigenvalue statistics of n n random matrices within spectral intervals of the order O(n ) is determined by the type of matrices (real symmetric, Hermitian or quaternion real) and by the density of states. We prove this conjecture for a certain class of the Hermi...

متن کامل

On the Relation Between Orthogonal, Symplectic and Unitary Matrix Ensembles

For the unitary ensembles of N × N Hermitian matrices associated with a weight function w there is a kernel, expressible in terms of the polynomials orthogonal with respect to the weight function, which plays an important role. For the orthogonal and symplectic ensembles of Hermitian matrices there are 2 × 2 matrix kernels, usually constructed using skew-orthogonal polynomials, which play an an...

متن کامل

Statistics of infinite dimensional random matrix ensembles

A complex quantum system with energy dissipation is considered. The quantum Hamiltonians H belong the complex Ginibre ensemble. The complex-valued eigenenergies Zi are random variables. The second differences ∆Zi are also complex-valued random variables. The second differences have their real and imaginary parts and also radii (moduli) and main arguments (angles). For N=3 dimensional Ginibre en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 2001

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/34/41/307